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INTRODUCTION 
Identifying Characteristics

Traditionally, insider threat mitigation (ITM) programs at nuclear facilities focus on identifying 

characteristics of individuals to identify and address possible malicious actions. This paradigm often 

manifests in the application, over the lifecycle of potential employees ,of different countermeasures to 

address these potential risks. Consider, for example, the National Insider Threat Task Force (NITTF) 

definition for insider threat:

“the risk [that] an insider will use their authorized access, wittingly or unwittingly, to do harm to their 

organization. This can include theft of proprietary information and technology; damage to company 

facilities, systems or equipment; actual or threatened harm to employees; or other actions that would 

prevent the company from carrying out its normal business practices.” [1, p. 3]

In the United States, the 2011 creation of the NITTF with Executive Order 13587 launched a coordinated 

effort to establish detection and prevention programs across governmental agencies.[2] In its 2017 

publication on best practices, the NITTF also highlighted the need for vigilance and diligence as 

successfully mitigating insider threats is “a dynamic effort requiring constant evaluation, fresh 

perspectives, and updated approaches.” [3]

ITM approaches at nuclear facilities tend to focus on identifying and deterring problematic or malevolent 

behaviors of individuals. These approaches have traditionally focused on preventative (measures 

implemented before access is granted) and protective (measures taken after access is granted and 

throughout employment) strategies to mitigate unwanted individual behaviors [4]. Such approaches 

may result in an overreliance on generic job task analysis and detection of aberrant individual behavior 

that may not fully account for workplace behavior patterns or may inadvertently ignore facility recovery 

operations. Yet, there may be an advantage in shifting this focus toward collective behaviors observed in 

the workplace for use in a more comprehensive “health-monitoring” paradigm. In such a paradigm, 

observed—and empirically measured—patterns of expected operational activities can serve as a 

baseline from which to detect potential insider threat activities. For example, data collected to monitor 

quality assurance or safety activities could be used to establish expected workplace trends and 

dynamics likely to be disrupted in the event of a malicious insider activity. Simply put, anomalies in 

expected operational patterns may provide additional useful insight to mitigate and minimize insider 

threats.

Building on best practices exhibited in the nuclear industry (e.g., by the U.S. Nuclear Regulatory 

Commission) and lessons learned from other industries (e.g., the casino industry), there seems to be 

a benefit in invoking an empirical, data-driven, collective-behavior-focused program to counter 

insider threats. From this perspective of ITM, undesired deviations from expected (or normal) 

patterns of organizational behavior may indicate an increased likelihood or opportunity for a 

malicious insider act. One key challenge for such an approach is the ability to distinguish between 

malicious intent and natural organizational evolution to explain anomalies in expected operational 

workplace patterns. Thus, a collective-behavior-based approach to ITM requires the presence of 

defined, observable measures and organization-level insider threat indicators on which to build 

metrics of behaviors that represent insider potential manifesting into malicious action. 

To this end, researchers from Organization 1 and Organization 2 conducted a multi-phase empirical 

study to explore the effectiveness of using commercial artificial neural network (ANN) software to 

improve insider threat detection mitigation (ITDM) with this collective-behavior-based approach. The 

2019–2020 study hypothesized that ANNs could be “trained” to identify and learn operational 

workplace patterns and alert when certain types, frequencies, or quantities of deviations emerge. If 

successful, the application of ANNs to ITDM would result in a new approach for understanding, 

detecting, evaluating, and mitigating insider threats—including a more comprehensive evaluation 

framework and set of measures. 

This article begins by situating this collective-behavior-based approach for ITDM within relevant 

literature from several disciplines and describing the efficacy of ANNs for this application. It then 

presents the hypothesis that ANNs are capable of detecting insider threat deviations from expected 

operational workplace patterns and reviews the approach and methods used in the empirical study. 

Following a summary of the analysis and evaluation of the study, this article concludes with insights 

and implications for ITDM and recommendations for future research.
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Challenges with physical access control systems  
for today’s facilities

What modern access  
control looks like

How to transition to modern access control without  
starting from scratch

2 SITUATING COLLECTIVE BEHAVIOR-BASED INSIDER 
THREAT DETECTION & MITIGATION

2.1 Traditional Approaches to Insider Threat Mitigation
By definition, traditional ITM programs at nuclear facilities have focused on countering “an individual with authorized access to 

[nuclear material] associated facilities or associated activities or to sensitive information or sensitive information assets, who 

could commit, or facilitate the commission of criminal or intentional unauthorized acts involving or directed at nuclear material, 

other radioactive material, associated facilities or associated activities or other acts determined by the State to have an adverse 

impact on nuclear security” [5]. This globally accepted definition of insider threat from the International Atomic Energy Agency 

(IAEA) is similar to what is touted by the World Institute for Nuclear Security [6] (WINS) and is generally consistent with the 

broader NITTF definition presented in the previous section. 

Many ITM programs focus on the idea that an insider threat opportunity will present itself when any person has access, 

authority, and knowledge of a specific nuclear facility [7]. The assumption is that threat opportunities will materialize into 

attacks when an insider has the motivation to act maliciously. In other words, an insider will attempt a malicious action when 

opportunity aligns with motivation. Up to this point, ITM programs have focused on implementing preventive and protective 

measures to counter such attacks. Preventive measures—typically implemented before access to a nuclear facility is granted—

aim to reduce the likelihood that bad actors will gain opportunities to act maliciously. Preventive ITM measures include pre-

employment screening, human reliability programs (HRPs), and other monitoring approaches based on behavioral reporting 

mechanisms. Though a critical element of ITM in general, HRPs cannot completely eliminate the potential for insider threats to 

a facility [8,9]. Protective measures—typically implemented after access is granted to a nuclear facility—aim to reduce 

opportunities for malicious insider acts through access controls, contraband detection, and other physical or cyber security 

measures. While protective measures provide some deterrence, their intended use as “point-in-time behavior” detectors can 

render them more susceptible to exploitation by a knowledgeable insider. Many traditional protective measures were developed 

to deter or capture adversaries without access to the facility. Because insiders have legitimate facility access, they are not likely 

to set off a “point-in-time” detector. For example, an insider is unlikely to set off a perimeter motion detector if they have 

authorized access to use the front door. Thus, protective measures, as traditionally applied, might need to be reconsidered to 

successfully identify and stop insider attempts.

Traditional ITM programs at nuclear facilities (e.g., [7]) have improved in recent years with additional study. Improvements 

include the use of mixed-integer programming to simulate insider actions in terms of advanced game-theoretic models [10],  

estimating insider-related behaviors in terms of the common cause failures of protective devices [11], and identifying 

sociotechnical indicators of insider threat risk [12]. These programs, however, are still driven by peer-to-peer reporting and 

individual behavioral observation mechanisms. Facilities are better off with these human-oriented ITM programs than with no 

ITM programs—but there is a need for a new insider threat framework that utilizes advances in data analysis to better 

characterize deviations from expected operational workplace patterns. If insider opportunity is often considered a function of 

personnel access, authority, and knowledge [4], then there should be a benefit in understanding operational patterns (or 

expected behaviors) related to access, authority, and knowledge. As shown in Figure 1, this approach shift focus from 

individually focused insider opportunity to facility-focused insider potential and asserts that unacceptable deviations from 

Figure 1: Venn diagram comparing the collective-behavior-based approach versus the individual-behavior-based 
approach to ITM from the international best practices for nuclear facilities in [5].
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expected patterns of access, authority, and knowledge relate to the likelihood of a malicious insider act. Such a collective-

behavior-based ITDM program could help to address issues in current approaches, such as inaccurately conflating human 

error with malicious acts, more adequately attributing triggers for insider actions, and more quickly communicating 

abnormal behavior within a facility to initiate a proper response.

2.2 Operational Patterns for Collective Behavior-Based Insider Threat 

Detection & Mitigation

A collective-behavior-based approach begins with exploring how individuals construct institutions, processes, and practices 

to achieve a common goal, which can invoke tenets of organization science to describe the resultant observable patterns of 

expected behaviors. Previous research demonstrates the utility of applying different organization science theories and 

insights to ITDM [13]. For example, one popular concept would describe the performance of ITDM in terms of the 

relationship between planned insider threat mitigations (“as designed”) and daily work practices with those mitigations 

(“as built”) [14], whereas another organization science theory would argue that ITDM performance results from recurrent 

human action (e.g., individual access, authority, and knowledge) that is both (and simultaneously) shaped by artifacts and 

constructed by their interpretation (e.g., organizational behaviors and patterns) [15]. Similarly, Rasmussen’s [16] collective-

behavior-based framework is popularly used in complex systems safety to describe how an organization can promote 

“campaigns for safety culture” to act as a “counter gradient” to various dynamics driving individuals toward the “boundary 

of functionally acceptable behavior,” as illustrated in Figure 2. In other words, organizational patterns can be used to 

account for individual behaviors that tend toward states of higher risk. The results of this research imply that a better 

understanding of organizational patterns could improve ITM programs by defining—and measuring—insider threat 

potential in terms of deviations from expected operational workplace patterns. 

While organization science has identified that observed patterns of organizational behaviors play a key role in mitigating the 

natural tendency for organizational pressures to drive individuals toward increasingly risky behaviors, no such approach has 

been developed to frame the likelihood of insider act success. Consistent with insights from organization theory, the 

monitoring of relevant, facility-level data signals over time can identify natural operational patterns that compose both 

“perceived boundary of acceptable performance” and the “Brownian movements” of individuals. Establishing baseline 

operational patterns for expected organizational behaviors from the set of continuously collected facility-level data signals 

can help determine the “error margin” between the perceived and actual boundary of functionally acceptable behavior—

including establishing thresholds of undesired deviations in two different ways. 

First, an absolute scale can be used to establish acceptable deviation ranges (e.g., only five individuals a day should be 

accessing a sensitive area). This approach clearly identifies an anomalous event but is likely to produce more false positive 

results. Second, acceptable deviation ranges can be placed around the baseline patterns (e.g., +/- 5% change in the 

number of people accessing a sensitive area per day). This allows bit more flexibility so that a single undesired deviation 

from operational patterns does not indicate an increasing insider threat potential, but rather that a significant enough 

change has occurred and should be investigated. The collection, processing, and evaluation of large, diverse data streams 

from multiple facility-level signals provide the opportunity for describing insider potential—and, by extension, the ITDM 

Figure 2: Rasmussen’s model of how organizational influences (the “counter gradient” that creates the “resulting perceived 
boundary of acceptable behavior”) can help mitigate natural tendency for organizational pressures to drive individuals toward 
increasingly risky behaviors (toward the “boundary to functionally acceptable behavior”), recreated from [16].

program—in terms of operational patterns that more comprehensively describe expected organizational behaviors. It is 

theoretically possible that any type of recorded data can serve as either a signal of organizational patterns or as a way to 

collect relevant information about an individual’s patterns and how they shift over time. In reality, the degree to which ITDM 

programs do not add any burden to current operational and/or security operations is likely to significantly increase 

acceptance and usability of such programs. Therefore, this initial exploration of a collective-behavior-based approach to 

ITDM focused on the impact of leveraging data signals already being collected within a facility (see Section 3.1).
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2.3 Data-Driven Insights for Insider Threat Detection & Mitigation

Similarly, leveraging advances in machine learning (ML) can support a data-driven approach to describing—and identifying 

anomalies within—observed operational workplace patterns. The ML domain introduces various mechanisms to support 

the aggregation of multiple, disparate data signals to detect abnormalities through deviations from an expected baseline. 

While direct quantification of insider threat is likely to be difficult, introducing ML insights and tools provides additional 

capabilities to enhance ITDM. 

ML methods are often considered a black box that is difficult to interpret, but generally ML is an algorithm that performs a 

task without explicit programming. One of the most well-known examples of ML, the artificial neural network (ANN), was 

inspired by modeling neurons in the biological brain, an example of which is illustrated in Figure 3. 

Neurons are typically organized into layers that form a network, and at a high-level, neurons receive multiple input signals 

and produce some output. In this representation, signals from neurons in the previous layer (x_i) are multiplied by a given 

weighting factor (w_i). These signals are summed together with a given bias term (b) before being applied within an 

activation function (f ), which ensures that the neural network can learn a nonlinear function. Output signals are propagated 

through the neurons in the network until the final output is calculated. The derivative of the loss between the target value 

and predicted value is back propagated through the neural network using the chain rule, where the gradients are used to 

adjust the weighting factors to give predictions closer to the true value. This process is referred to as training.  Using this 

generic process, neural networks can, theoretically, learn any nonlinear function and offer several key concepts that might 

be leveraged to improve ITDM.    

ANNs have been applied to a wide range of domains including pattern detection, routine task performance reduction, and 

sensor attack mitigation—each of which implies benefits for ITDM. Relevant ITDM patterns could exhibit complex temporal 

dependencies in high dimensional data making it difficult to detect with traditional statistical approaches. ANN-based 

approaches enable the capture of these subtle changes within larger, multisensory datasets.

 Specific ML examples of this capability include a method to simultaneously train two neural networks to allow for recurrent 

attempts at “fooling” each other to identify anomalies within discrete event sequences [18] and an algorithm for effectively 

capturing multiscale sequential patterns in order to identify anomalies [19]. Similarly, ML approaches can reduce the 

number of routine tasks performed by humans in support of ITDM, including rapid response image recognition algorithms 

[20] and ML tools with high degrees of accuracy (~94%) for categorizing digitally captured visual images [21]. Lastly, ML 

approaches ITDM by mitigating insider attempts to attack sensor systems, as demonstrated by the ability of convolutional 

autoencoders to protect against attacks on fingerprint readers for access control [22].

While the application of ML and ANN approaches to ITDM is promising, it is not a panacea solution. Shortcomings that 

would need to be addressed for successful application to ITDM include (but are not limited to) the infrastructure need for 

large amounts of data for training, the potential difficulties in transferring algorithms between facilities, calibrating for 

background signal noise, sensor drift (or misalignment), and protecting the ML algorithms themselves from attack. For 

example, consider the three images in Figure 4, below. While the algorithm correctly classifies the left-most image as a 

panda with approximately 58% confidence, adding a noise pattern that is imperceptible to the human eye (the middle 

image) results in the algorithm incorrectly classifying the modified image as a gibbon with over 99% confidence [23]. 

 

Figure 3: Representative model of a single neuron processing input signals into an output activi-
ty without explicit programming for the activation function, from [17].

Figure 4: Representative example of “attacking” machine learning and artificial neural network algo-
rithms to distort analytical outputs, taken from [23].
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3 METHODS & DATA COLLECTION 

3.1 Research Approach
To focus on this new approach to ITDM, the empirical focus shifted away from the level of the individual and toward the 

possibility of detecting deviations from expected operational patterns of behavior across a given nuclear facility. Such 

operational patterns emerge as facility personnel settle into routines of regular (e.g., daily or weekly) practices. This is a 

natural human trait expected to exist in both commercial facilities (that have very routine operations) and research facilities 

(that can have very irregular operations). Yet, these operational patterns can often be captured and described by using 

signals already collected at many nuclear facilities, including (for example) access control data, intrusions sensor data, 

camera video, area radiation monitoring data, personal radiation monitoring data, and material control data. If empirical 

bounds to these operational patterns exist, they could be considered representative of the range of expected—or 

“normal”—operational behaviors at a facility. By extension, then, deviation from these bounds could be an indicator of 

unwanted behaviors—including possible malicious insider acts. 

Organization 2 (ORG 2) provided a facility within which to identify and test the empirical bounds of operational workplace 

patterns. ORG 2 is an innovative facility with unique capabilities and a multifaceted mission that includes educating next 

generation leaders in nuclear science and engineering. In addition to its educational role, ORG 2’s research focuses on 

several primary thrusts, including (but not limited to) nuclear forensics; trace element analysis using neutron and prompt 

gamma activation; neutron depth profiling-based measurements of elemental distribution in materials; and imaging 

materials with neutron radiography. ORG 2 can also produce a variety of radioisotopes for use in research, nuclear 

medicine, and industrial processes, as well as support the design and development of experiments, processes, and 

products. ORG 2 also houses a TRIGA Mark II nuclear research reactor designed by General Atomics. The reactor is the 

newest of the current fleet of U.S. university reactors that reached initial criticality in March 1992 [26]. The reactor is 

capable of steady-state operation at power levels up to 1 megawatt (MW) or pulsing mode operation in which much higher 

power levels (as high as 1500 MW) can be achieved for short durations (on the order of 10 microseconds). 

Under normal operating conditions, ORG 2 hosts a range of personnel, who can include permanent operational staff, 

administrative staff, faculty, post-doctoral and staff researchers, graduate students, undergraduate students, contractors, 

and visitors. Because ORG 2 is under the authority of the Nuclear Regulatory Commission, it is important to note that the 

Code of Federal Regulations (10 CFR 73) dictates security responsibilities and capabilities for the facility. ORG 2 provided a 

unique venue to gather empirical data to evaluate the efficacy of this proposed new perspective for ITDM. For example, the 

range of educational and research-based activities at ORG 2 provided opportunities to empirically describe operational 

workplace patterns in both more regular activities (e.g., those associated with course meeting times) and more irregular 

activities (e.g., those associated with individual experiments). More specifically, ORG 2 provided an opportunity to explore 

the use of an ANN to “learn” related operational workplace patterns to examine its ability to detect off-normal personnel 

activities—and (potentially) identify elevated insider threat risk levels across the facility. 

To capture the set of data signals related to operational workforce patterns, the ReconaSense® Platform for Physical Security [27]—a 

commercially available ANN platform—was selected (and installed) at ORG 2. (NOTE: ReconaSense®— located in Austin, TX—had 

previously interacted with ORG 2 regarding some of its technical capabilities, which was a driver in selecting them as the commercial 

vendor for this project.) This initial investigation was predicated on exploring the efficacy of unsupervised neural network learning. 

More specifically, the ReconaSense® ANN system collects information from facility sensors for a period of time in order to generate a 

training dataset. The dataset size increases until an internal performance metric, likely based on validation error, is met. Validation error 

refers to the ANN prediction error on a dataset not seen in training. Evaluating performance using validation error helps avoid common 

ML problems such as overfitting. Once a sufficiently large dataset is collected, the ANN weights are tuned through an optimization 

algorithm such as stochastic gradient descent.  More specifically, the ReconaSense® ReconAccess [28] software uses its ANN algorithm 

to collect data from sensors already deployed to learn the flow of people and processes at a facility, identify abnormal events, and alert 

an operator to a possible threat. This ANN integrates into a facility’s existing security posture and implements role-based access 

controls with risk-adaptive access controls to ensure that all personnel with access to a facility only visit the appropriate areas. The 

software manages security by managing risk and flagging and reporting anamolous events.  

The ReconaSense Platform incorporates an ANN that provides real-time analytical processing of aggregated data from a wide array of 

intelligent sensors, access control activity, video systems, and big data repositories (Figure 5). The ANN works on a few basic principles. 

It receives a wide array of input data that affect internal variables. The ANN evaluates the data based on internal information and sends 

results to several output variables. The output response can back-propagate and start a new process with that additional intelligence. 

The system treats everything as a data point (access control data, intrusion sensor data, etc.). It continually records all events from the 

sensors as individual entities in a database. The ANN then evaluates any new events with respect to the training dataset and 

determines the degree to which that event correlates with the expected behaviors shown in the training dataset.  The degree to which 

an event is inconsistent with the training data determines a degree of automated risk modification for the facility (or area in a facility) 

and can flag the event as an anomaly and notify facility personnel. Since all new events get incorporated into the existing data, if an 

event that is flagged as an anomaly gets cleared as a correct access, then this new event changes the bounds of the training data and 

the system then learns that this new event is not a threat event.  From this standpoint, the ANN evolves to incorporate new 

data and learns how to identify anomalies and ignore false alarms. 

 Specific ML examples of this capability include a method to simultaneously train two neural networks to allow for recurrent 

attempts at “fooling” each other to identify anomalies within discrete event sequences [18] and an algorithm for effectively 

capturing multiscale sequential patterns in order to identify anomalies [19]. Similarly, ML approaches can reduce the 

number of routine tasks performed by humans in support of ITDM, including rapid response image recognition algorithms 

[20] and ML tools with high degrees of accuracy (~94%) for categorizing digitally captured visual images [21]. Lastly, ML 

approaches ITDM by mitigating insider attempts to attack sensor systems, as demonstrated by the ability of convolutional 

autoencoders to protect against attacks on fingerprint readers for access control [22].

While the application of ML and ANN approaches to ITDM is promising, it is not a panacea solution. Shortcomings that 

would need to be addressed for successful application to ITDM include (but are not limited to) the infrastructure need for 

large amounts of data for training, the potential difficulties in transferring algorithms between facilities, calibrating for 

background signal noise, sensor drift (or misalignment), and protecting the ML algorithms themselves from attack. For 

example, consider the three images in Figure 4, below. While the algorithm correctly classifies the left-most image as a 

panda with approximately 58% confidence, adding a noise pattern that is imperceptible to the human eye (the middle 

image) results in the algorithm incorrectly classifying the modified image as a gibbon with over 99% confidence [23]. 

 

Figure 5: Data Flow Schematic for ReconaSense Platform.
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To Consistent with an exploratory approach, the ANN  was used to capture ORG 2 facility data already being collected and 

focused signals related to access control and intrusion detection. Access control data collection focused on understanding 

when and how frequently authorized personnel enter a given area, as well as attempts at unauthorized access. At ORG 2, 

this data is collected via identification badge readers assigned to authorized personnel and corresponding databases that 

contain each individual’s different levels of access. Collected as independent data streams, simple statistical tests could be 

applied to measure deviations from baseline patterns of individual access points. Yet, taking these access control points as 

interdependent data streams represents a more complex scenario that could leverage ANNs to help ascertain a deeper 

understanding of expected profiles of movement throughout ORG 2. Similarly, intrusion detection collection focuses on 

understanding the implications of registered movement in protected areas under different ORG 2 operational states. 

Measuring the deviation of individual intrusion detection sensors—which consisted of area motion sensors and balanced 

magnetic switches—does not require sophisticated ANN-based approaches. Considering the intrusion detection data in 

conjunction with other data signals (the access control data, for example) posits a more interesting and complex problem 

that supports an ANN-based solution. Table 1 summarizes the sensor and data type collected by the ANN, as well as 

representative activities expected to be captured by each sensor at a facility such as ORG 2. (NOTE: While this phase of the 

research did not include integration of camera signals or area radiation monitoring instrumentation, these data signals 

could easily be included in a future phase. See Section 5.) 

3.2 Data Collection Strategy

Baseline data to train this ANN on normal ORG 2 operations was collected from late 2019 to early fall 2020. For the purpose 

of observing trends in the access control patterns, data was collected in multiple phases. Phase I data was collected from 

October 12, 2019 to January 10, 2020 (but excluded December 23, 2019 to January 9, 2020—a university holiday when 

access to ORG 2 was significantly more sparse). Phase II data was collected from January 11, 2020 to September 25, 2020. 

To describe operational workplace patterns at ORG 2, access control data points were collected primarily from access 

credential readers, while intrusion detection data points were collected from area motion sensors and balanced magnetic 

switches throughout ORG 2. In total, 32,636 access control data points and 1,617 intrusion sensor data points were 

collected during Phase I and Phase II (Table 2). The data collected from XX to XX was used for very basic “training” of the 

ANN.

Table 1: Description and categorization of data related to a representative set of expected organizational activities at ORG 2.

ITDM Category Sensor Type Data Type Representative Organizational 
Activity

Access Control

Badge reader
• ORG 2 entry
• Security control panel
• Limited area
• Reactor control room

Badge readers:
• # authorized attempts
• # unauthorized attempts (false 

negative + false positives)
• Time of access attempts

• Personnel arrival to facility
• Researchers approaching the 

reactor
• Reactor operator arriving for 

shift

Intrusion Detection

Balanced magnetic switch 
• Limited area
• Security control panel
• Reactor control room

Area motion sensor 
• Reactor bay
• Fuel storage surveillance

Balanced magnetic switches:
# times switch opened
Time at which switch opened

Area motion sensors:
# times change in physical 
phenomena registered
Time at which change in physical 
phenomena registered

• Researchers approaching the 
reactor

• Maintenance of security control 
panel

• Reactor operator arriving for 
shift

• Custodial services around the 
reactor

• Transfer of fresh/used fuel into/
out of ORG 2

Table 2: Summary of artificial neural network data collected from ORG 2.

Data Characteristic Phase I Data Set Phase II Data Set

Date range
Access control data points
Intrusion detection data points
Categories for organizing data 
pointsc

Oct. 12, 2019 to Jan. 10, 2020a
13,653
694
SAP
TSMAP

Jan. 11, 2020 to Sep. 25, 2020b
18,986
923 
SAP
TSMAP

a Excluding 12/13/19 to 01/09/20
b Acknowledging the near complete lack of student accesses between Mar. 15, 2020 and Jul. 1, 2020 due to 
COVID-19 precautions
c SAP = single-access-point operational patterns; TSMAP = time-sequences, multiple access point operational 
patterns

1 The ReconaSense® was used to control and monitor the ORG 2 access control system, where operations were conducted in such a manner that sup-
ported testing of the ANN while ensuring that required security functions were not disturbed.

These data points were loosely organized into two categories to observe trends in the bounds of the ORG 2 operational 

patterns. The first category consisted of single-access-point operational patterns, in which the access control data were 

organized by access point, date and time of allowed access, and identity used for access. This data category used sensor 

observations to produce ANN-reported patterns in time to identify bounds for when general access is expected to occur for 

an average individual as well as for specific individuals. Deviations manifest as attempted accesses outside of these 

empirically defined time bounds. The second category consisted of time-sequenced, multiple-access-points operational 

patterns, in which the access control data were organized by identity used for access, date and time of allowed access, and 

by access point. This data category used sensor observations to produce ANN-reported patterns in time to identify bounds 

for when particular individuals would be expected to complete a particular access sequence. In this data category, 
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deviations manifest as either attempted accesses outside of empirically defined time boundaries or attempted accesses in 

a different order than in empirically defined baseline patterns. 

All collected data in this study was anonymized; any “individual” analysis was conducted on a genericized average of several 

individuals; and a majority of the analysis was conducted at higher levels of data aggregation. (Note: Anonymization of 

individuals was conducted according to best research practices [29]. If such an ANN were deployed, then individual 

identities would be another data stream incorporated into the learning process—and mitigation strategies.) This includes 

evaluating operational workplace patterns of all facility personnel or those of facility personnel categories—small subsets of 

facility personnel with similar functional roles within the facility (e.g., faculty, operational staff, or students). While some 

empirical detail was lost, incorporating these facility personnel categories provided the opportunity to explore different 

operational workplace pattern profiles across personnel roles while respecting the anonymity of individuals associated with 

ORG 2.

3.3 Experimental Scenario Development

In addition to this “proof of concept” data categorization, the ANN was evaluated against three different scenarios related to 

insider threat mitigation using data collected from sensor types described in Table 1. In each scenario, ORG 2 personnel 

were tasked with carrying out a specific action within a set window of time. This allowed the research team to observe the 

ANN’s performance and evaluate its ability to detect anomalous behaviors. In Scenario (1)  the insider is attempting to gain 

access to the closet that contains ORG 2’s intrusion detection system panel, which is protected by the ORG 2 physical 

security and access control systems. This panel is comprised of all incoming intrusion sensor data and processing, as well 

as alarm signal communication to the central alarm station (CAS). In this scenario, if an insider gains access to this panel, it 

is assumed they could sabotage the panel to eliminate/falsify alarm signals at the CAS—reducing the possibility for 

assessed detection and greatly increasing the success of a subsequent outsider or insider attempting an attack on the 

facility at some later date/time. 

In Scenario (2) the insider is trying to gain access to the reactor bay during off-hours. During such off-hours, the reactor bay 

is locked and alarmed. This scenario assumes that the insider has authorized access to the ORG 2 building, but not to the 

reactor bay inside the ORG 2 building. It is hypothesized that the insider uses their authorized credentials to access the 

ORG 2 building and then attempts entry to the reactor bay. When combined with other ANN-generated insights like the time 

(e.g., off-normal hours) or expected profile of access (e.g., credential that entered ORG 2 does not have reactor bay access), 

this behavior could be flagged as a possible elevation in insider potential to the facility and sent to the CAS for assessment.  

In Scenario (3) the insider is trying to acquire knowledge pertaining to the security system for ORG 2’s fuel storage facility. 

To complete this task, the insider needs to surveil the area around the stored fuel and then test the alarm systems to 

determine what level of activity will set off storage location access alarms. Such testing of the alarm system could include 

the intrusion detection sensors, area radiation sensors, cables/conduits for those sensors, and the alarm panel. This 

scenario was designed to include evaluating the ANN’s ability to identify potential insider surveillance and potential insider 

testing alarms/sensors to determine sensitivity levels.

In these three scenarios, both single-access-point and time-sequenced, multiple-access-point operational patterns were 

incorporated to evaluate the ANN’s ability to support ITDM. Within these analyses, deviations from expected operational 

patterns included single-access-point patterns outside of ANN-defined bounds (e.g., anomalous access control sensor 

data) and time-sequenced, multiple-access-point patterns (e.g., unusual combinations of sensor signals). Overall, the data 

collected across the two phases of this research project supported training the ANN to identify and define expected 

operational patterns at ORG 2, developing additional models and performance measures for ITDM, and analyzing these 

ANN-learned operational patterns against a set of hypothesized insider threat-related scenarios.

When combined with other ANN-generated insights 
like the time (e.g., off-normal hours) or expected 
profile of access (e.g., credential that entered ORG 
2 does not have reactor bay access), this behavior 
could be flagged as a possible elevation in insider 
potential to the facility and sent to the CAS for 
assessment. 
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4 RESULTS & ANALYSIS  

4.1 Operational Workplace Pattern Learning Analysis for the Artificial 

Neural Network 
Despite the anticipated irregularity in the operations of ORG 2 as a teaching facility composed of a diversity of personnel, 

including operational/administrative staff, faculty, graduate/undergraduate students, and visitors, Phase I data illustrated 

the ability to establish bounds for the operational workplace patterns that supported the potential detection of insider 

actions by deviations from these bounds (e.g., anomaly detection). One anticipated organizational pattern relates to the 

time when personnel first enter the ORG 2 facility—with the expectation that the data would be fairly tightly clustered 

around 7:00 a.m., the traditional start of a professional workday. For example, consider Figure 5 showing the frequency of 

distribution of the first allowed access to the ORG 2 facility versus the time of day for Phase I data as a representative 

single-access-point metric. As illustrated, there are clear bounds on an expected first facility access, for both normal 

working days and non-working days (e.g., holidays and weekends). Even though the bounds illustrated in Figure 6 are wider 

than anticipated, it still demonstrates the ability of the ANN to define expected operational workplace patterns and 

establish a baseline to measure potential deviations. 

Finer, group-level details were observed by further parsing the single-access-point data. As shown in Figure 4, the Phase I 

data was disaggregated to determine the time of first entry to ORG 2 by each personnel group. As illustrated, visualization 

helps identify category-specific operational workplace patterns in terms of their time of first entry to the facility. In some 

cases, these patterns are very tightly bounded in time (for example for the administrative and operational personnel), and 

in other cases these patterns have wide distributions (for example the faculty, undergraduate students, and graduate 

students). These distributions—which are also measured for other access points within ORG 2—represent expected arrival 

profiles per personnel group and provide another collective behavior-based profile to detect deviations that may reflect a 

potential insider act.

Figure 6: Frequency distribution showing time of first entrance to ORG 2 facility, comparing “working days” and “all opera-
tional days” with Phase I data in [A] and Phase II data in [B].

Figure 7: Frequency distribution showing time of first 
entrance to ORG 2 during data collection time and sepa-
rated by personnel group.

With the Phase I data, time-sequenced, multiple-point operational patterns were analyzed with respect to the time between 

accessing entry points along a given path. Consider, for example, focusing on the observed behaviors of a single operator 

who is normally the first person to arrive at the facility. The ANN would register these observations and determine an 

expected routine of accessing entry points A, B, C, D, and E—resulting in an emergent, dynamic pattern of expected 

behavior. This individual usually arrives at entry points within a short window of 450 seconds—97% of the time for the first 

four entry points and 71% of the time for the fifth entry point. Figure 7 shows the observed frequency distribution of the 

time delay between successful authenticated access at each entry point. More specifically, this frequency distribution 

shows that, based on this representative training data set, the ANN would expect this individual to follow access point A with 

an authentication to access point B within 42-66 seconds. It similarly expects the individual to continue to access point C 

and D with only very short delay times (less than 12 and 6 seconds, respectively). Note, however, that there are outlier data 

points in which the individual did not immediately proceed to access point C after clearing access point B. 

Figure 8: Frequency distribution showing time-series 
plot of time delays between authenticated access along 
a series of entry points (A, B, C, D, E) the compose the 
expected behavior of the first person to enter the facility.
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4.2 Scenario Analysis Results for ANN-Based Insider Threat Detection 

& Mitigation  
A series of scenario-based experiments were designed to further explore the efficacy of this ANN-based approach to ITDM. 

Across three different target locations within ORG 2—the closet housing the security system’s control panel, the reactor 

bay, and nuclear fuel storage area—the scenarios introduce varying levels of experimental sophistication. In addition to the 

variability (and complexity) in the scenarios, the experiments incorporated additional insights by exploring the ANN’s 

efficacy against a range of potential insider pathways to the target locations. The pathways are summarized in Table 3 

below.

Table 3: Possible insider threat pathways to support experimental scenario analysis got ANN-based insider threat detection & mitigation.

Possible Insider 
Pathway Logical Description Notional Example

[A]

Attempt of direct access by an unauthorized 
individual (testing both single attempts and 
repeated attempts both during normal working 
hours and on off-hours)

Bob (who is not allowed to access the panel) uses his 
own credential in an attempt to access the intrusion 
detection system panel

[B]

Attempt to access by an unauthorized individual 
during off-hours using credentials from an 
authorized individual but using their own 
credentials to access the ORG 2 building

Bob (who is not allowed to access the intrusion 
detection system panel) uses his credential to enter 
the building and uses Fred’s credential (who is 
allowed access to the panel) in an attempt to access 
the intrusion detection system panel

[C]

Attempt to access by an unauthorized individual 
during off-hours using credentials from an 
authorized individual and using that individuals 
credentials to access the ORG 2 building

Bob (who is not allowed to access the intrusion 
detection system panel) uses Fred’s credential (who 
is allowed access to the panel) to enter the building 
and in an attempt to access the intrusion detection 
system panel

For Scenario (1), analysis was conducted on data collected from access control readers at the facility entrance and near 

security-related control systems. In Scenario (1), the ANN acted as an ITDM system by attempting to detect such off-

normal activity as an insider attempting to gain access to the closet containing the ORG 2 intrusion detection system 

panel—and by electronically engaging locking mechanisms to deny access to any unauthorized attempt. Using a 

combination of single-access-point and time-sequenced, multiple-access-point operational patterns, these three tests of 

this hypothesized insider scenario were evaluated with the ANN. Because each case for test (1A) resulted in the insider 

attempt at unauthorized access being detected and denied, these results benchmark this ANN approach to well established 

capabilities (and performance) of traditional access control systems. The other two hypothesized manifestations of this 

scenario were similarly evaluated, where unauthorized access was detected and denied in most cases for test (1B) but in no 

cases for test (1C). Scenario (1) results are summarized in Table 4.

These Scenario (1) results match intuition, as tests (1A) to (1C) represent increasingly complex insider tactics. These results 

further support the use of traditional protective measures—in this scenario, layers of access controls—to mitigate the 

potential of unauthorized access to key locations within a nuclear facility. While not all attempts at unauthorized access 

were detected and (electronically) denied in tests (1B) and (1C), this illustrates two additional key findings. First, the 

increased success of increasingly complex insider tactics to gain unauthorized access suggests a need to augment 

applications of multi-layer, credential-based access controls. Second, an ANN-based solution that incorporates additional 

data streams could augment the ability of the credential-based access controls evaluated in Scenario (1) to detect and deny 

unauthorized access. 

In Scenario (2) analysis was conducted on data collected from multiple access control readers leading to the reactor bay 

and motion sensors within the reactor bay itself. Here, the ANN acted as an ITDM system looking for off-normal activity that 

would include not only attempts at unauthorized access (similar to the results from the first scenario), but also early 

detection of the insider moving toward the reactor bay. More specifically, test (2A) used the ANN to identify unauthorized 

access to the reactor bay itself, while test (2B) was designed to identify suspicious movement toward the reactor before any 

attempt to bypass reactor bay access control station(s). Again, using a combination of single-access-point and time-

sequenced, multiple-access-point operational patterns, these tests of Scenario (2) were analyzed with the ANN. In test 

(2A), for example, multiple-access-point patterns based on access control reader data were used to identify unacceptable 

deviations in expected operational workplace patterns related to unauthorized reactor bay access. Similar to test (1A), the 

insider attempting unauthorized access into the reactor bay was detected and denied in every case. Test (2B) was not 

evaluated with Phase I data due to time constraints, but the results from the Phase II data indicate that such motion 

detection sensors augment the data used by the ANN to improve its capability, resulting in the ANN detecting attempts at 

unauthorized reactor bay access before reaching a reactor bay entry point in most cases. All Scenario (2) results are 

summarized in Table 4.

Similar to Scenario (1), these results match intuition, where tests (1A) and (2A) each represent the simplest insider tactic 

and further support the use of traditional protective measures like credential-based access controls to mitigate the 

potential of unauthorized access to key locations within a nuclear facility. One additional key finding from Scenario (2)—

particularly in test (2B)’s ability to leverage motion detector data outside of the reactor bay—is the demonstration of 

ANN-identified deviations to highlight potential suspicious insider activities (e.g., unauthorized reactor bay access) before 

they occur. Coupling this motion detector data and reactor bay access control data formed a time-sequenced, multiple-

point operational pattern that could be used as a learned “profile” of deviation for the ANN.  This demonstration introduces 

the ability to create more sophisticated profiles of operational workplace patterns and better train the ANN to detect 

deviations using this time-sequenced, multiple-access-point operational pattern approach—suggesting that incorporating 

more data streams into such patterns would provide higher fidelity learning to the ANN and more nuanced detection of 

deviations.

Lastly, in Scenario (3), analysis was conducted on data collected from motion detection sensors, reactor bay access 

controls, intrusion detection sensors, area radiation sensors, and alarm panel sensors. The ANN acted as an ITDM system 

by analyzing these data to surveil for off-normal personnel activity, in particular for signs of multiple attempts to access the 
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fuel storage area. Scenario (3) was designed as a more nuanced set of tests to evaluate the ability of an ANN-based ITDM 

approach to detect precursor activities to unauthorized access. More specifically, test (3A) sought to demonstrate the 

ability of the ANN to detect evidence of insider surveillance activities within the reactor bay, and test (3B) aimed to 

demonstrate the ANN’s ability to detect insider testing of various alarms related to accessing nuclear fuel storage. For 

Phase I data, the ANN struggled to sufficiently detect insider surveillance activities in test (3A), and despite additional data 

points from Phase II, these results hold true and indicate the need for an additional data course for the ANN to better detect 

possible insider surveillance. Similar to test (2B), test (3B) was not evaluated with Phase I data due to time constraints, but 

the results from the Phase II data indicate that such multiple-point patterns derived from multiple sensor types can detect 

and deny insider alarm testing in many cases. However, the ANN is limited in its ability to detect this type of sensor testing 

due to hardware constraints—since the sensor signal has a very high nuisance rate and because identification of who is 

located where in a room is not possible with the existing system. 

The Scenario (3) results introduce a new element to insider threat mitigation. Though both scenario tests had challenges—

including adequately distinguishing “insider surveillance” from normal operational workplace patterns—these early results 

illustrate the potential benefit of ANN-based approaches for detecting a range of activities precursory to an attempted 

insider action. Yet, the use of an expanded set of data streams would establish more complex time-sequenced, multiple-

access-point operational patterns of behavior that could better distinguish insider surveillance or alarm testing activities. 

For example, this ANN-based ITDM approach would be greatly enhanced with the use of personal dosimeters—which 

record position information—to uniquely identify the position of individuals in the facility. 

Since Phase I consisted of limited testing data, its evaluation primarily consisted of demonstrating the validity and 

acceptability of the scenarios to provide useful results in evaluating the ANN’s capability to support ITDM. For example, 

consider the success rate in detecting and denying all attempts at unauthorized access to the panel closet and the reactor 

bay, as well as the success rate in detecting and denying access to the panel closet by an unauthorized individual (with 

access to the ORG 2 building) using an authorized credential. The results of testing the scenarios against Phase II data 

showed both strong consistency with Phase I results and more nuance and higher fidelity—for example the ANN’s ability to 

detect abnormal motion and flag that as a potential cause for concern.

Table 4 summarizes the ANN performance results of all hypothesized insider-threat-related testing scenarios.

Table 4: Summary results from insider-threat-related testing scenarios.

Scenario 
Name [#] Test Description Phase I Results* Phase II Results

Security 
Closet 
Access (1)

Unauthorized Access Attempt (1A)
Authorized Access Credentials Used 
by Unauthorized Individual Who 
Entered Building Using Their Own 
Credentials (1B)

Authorized Access Credentials Used 
by Unauthorized Individual Who 
Entered Building Using Authorized 
Individual’s Credentials (1C)

Detected & Denied in ALL Cases 
[SAP]

Detected & Denied in MOST 
Cases [SAP; TSMAP]

Detected & Denies in NO Cases 
[TSMAP]

Detected & Denied in ALL Cases 
[SAP]

Detected & Denied in MOST Cases 
[SAP; TSMAP]

Detected & Denies in NO Cases 
[TSMAP]

Reactor Bay 
Access (2)

Unauthorized Access to Reactor Bay 
(2A)
Early Detection by Motion Sensor 
(2B)

Detected & Denied in ALL Cases 
[TSMAP]

Not Tested

Detected & Denied in ALL Cases 
[TSMAP]

Detected in MOST Cases

Fuel Storage 
Surveillance 
(3)

Insider Surveillance (3A)
Insider Alarm Testing (3B)

Difficult to Detect Without 
Additional Sensing Input 
[TSMAP]

Not Tested

Difficult to Detect Without Additional 
Sensing Input [TSMAP]

Difficult to Detect Without Additional 
Sensing Input [TSMAP]

*SAP = single-access-point operational patterns; TSMAP = time-sequenced, multiple-access-point operational patterns

These combined results suggest that a “new” ITDM framework could be successful at detecting insider actions (or 

precursor activities) based on deviations in operational workplace patterns. More specifically, a new insider threat 

framework seems to emerge from these empirical insights—namely that insider threat can be identified based on a 

measured (and therefore quantifiable) change in operational workforce patterns. Such a data-driven framework can help 

build upon more traditional ITDM approaches that are deeply reliant on human judgment of the behaviors of others. For 

example, deviations from ANN-determined (e.g., “learned”) baseline operational workplace patterns can lead to undesired 

personnel (or organizational) behaviors and facility performance. Small deviations may result from innocuous causes (e.g., 

personnel complacency) or indicate organizational evolution. Large deviations, however, may be indicative of more 

intentional or malicious activities. Using physical sensors to understand deviations can also potentially provide insight into 

the motivations of a potential insider threat. For example, an insider “testing” doors that they are not authorized to enter or 

coming into the facility long after their normal hours could suggest a stark behavioral change—possibly indicating a turn 

toward malicious intent—that should be investigated by management. By measuring these deviations, an ANN-based ITDM 

approach can quantify anomalous behavior that may be indicative of insider potential—thereby suggesting the ability to 

communicate insider risks in (near) real-time. Further, this quantified ITDM concept also allows organizations to target 

security measures and investigations towards specific deviations most likely to constitute a threat. While broader behavioral 

monitoring and HRP should remain in place, this quantifiable ITDM program would support more efficient and effective use 
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of security resources. 

In addition, an ANN-based ITDM framework can be tailored to specific facilities based on their own operational workplace 

patterns and threshold of insider risk acceptance. Moreover, these thresholds for delineating between acceptable and 

problematic deviations can be calculated in two distinct manners. First, deviations from expected operational patterns can 

be defined as the absolute difference between expected and observed operational workplace pattern profiles (e.g., custodial 

staff with fairly rigid routine operations). This calculation would provide lower overall uncertainty in measuring the actual 

deviation—akin to common uses of moving averages and seasonality approaches—but may experience higher false positive 

rates given the propensity for human behaviors to drift over time [16]. Second, deviations can be defined as relative 

differences to learned operational workplace patterns. This calculation considers the likelihood that baseline personnel 

behavior profiles evolve over time and utilizes ANN machine learning to regularly update its definition of “expected” 

operational workplace patterns. This approach would likely provide slightly higher uncertainty in measuring deviations but 

far fewer false positives. These multiple levels of customization would allow facilities to adjust to their own staff and facility 

needs and utilize collected data signals already in place without a significant investment in new security hardware. While 

additional research needs to be completed to fine tune best practices and recommendations for this new ITDM, these 

results suggest that such an ANN-based approach can enhance current ITM, and the concept of insider potential should 

continue to be investigated (and refined).

Most of the scenarios analyzed were relatively simple and consisted of deviations using only a few features—where 

traditional statistical tests are applicable. Yet, these approaches would likely be ineffective in more complex scenarios that 

measure additional data-derived deviations from expected operational patterns. The ability of the ANN configuration 

deployed for this research to both detect and deny insider actions in the simpler scenarios is a proof-of-concept. In the 

scenarios where the ANN was unable to adequately detect the insider action, the results indicated that incorporating 

additional sensor data could better capture deviations in operational workplace patterns in order to detect potential insider 

actions. For example, the results of test (1C) show a successful insider act in which an unauthorized individual gained access 

to the reactor bay using the credentials of an authorized person was not detected by the ANN. While this deviation of 

expected operational workplace patterns was not detected by the current ANN configuration, the ReconaSense® software 

has the ability to incorporate additional data streams—including video feeds and facial recognition technology—that could 

build a more nuanced profile of time-sequenced, multiple-access-point operational patterns to better detect such a 

deviation. From this ITDM perspective, additional data would expand the ANN’s understanding of expected operational 

workplace patterns and enhance the ANN’s learning to detect—and deny (where it can) continued actions for—deviations 

from those patterns. Additional data would also expedite the ANN’s ability to communicate the existence of an anomaly, and 

potentially an insider action, for appropriate response.

While elements of traditional ITM will still be important within the context of an updated framework, these results show that 

traditional protective ITM measures can be supplemented with those proposed in the new framework to enhance overall 

ITDM at nuclear facilities. For example, more traditional ITM programs would likely have similar access controls but would 

not be able to understand when abnormal access requests suggest a new pattern of behavior. The demonstrated ability of 

the ANN to detect deviations from expected operational workplace patterns supports a collective-based approach to 

identify new patterns of behavior that could represent malicious insider actions. This ability separates the proposed ITDM 

framework from traditional approaches, and this study’s results suggest an improvement in identifying insider attempts.

ReconaSense® software has the ability to 
incorporate additional data streams—
including video feeds and facial recognition 
technology—that could build a more 
nuanced profile of time-sequenced, 
multiple-access-point operational patterns 
to better detect deviations in operational 
workplace patterns in order to detect 
potential insider actions.
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Phase III could incorporate closed-circuit television camera footage, and facial recognition technology could help to identify 

important deviations—like an employee using a badge that does not belong to them (test [1A])—that do not necessarily fit 

neatly within a quantitative definition of a deviation. 

Such new data streams would clearly improve the accuracy of defining insider potential, but also offer challenges in terms 

of transparently translating these impacts into quantitative measures. Yet, even a new data-driven ITDM approach cannot 

operate without human impacts and bias—necessitating a strong understanding of the impacts on security personnel, the 

workforce, and morale as deviations in operational workplace patterns are uncovered. For example, employees who know 

such a system is in place may act differently than those who do not know. This could lead to potential insiders purposefully 

changing their behaviors in order to “teach” the ANN new operational workplace patterns—an extension of the classic 

challenge of addressing the fact that insiders may know the protective measures in place. In this manner, this persistent 

challenge to countering insider actions will need additional empirical evaluation and updating of the logic supporting this 

data-driven, ANN-based approach to ITDM. 

As indicated in the trends between Phase I, Phase II, and combined results, the more training data ingested by the ANN, the 

better it can learn and describe more robust and nuanced operational patterns. More robust operational workplace 

patterns also serve to extend this research by offering higher fidelity results on more rigorous scenario testing. Next steps 

could include, for example, a set of controlled experiments (including control groups) extending the three scenarios 

evaluated in this study to more formally assess how well anomaly detection capabilities support insider threat detection 

across different commercially available ANN options. For example, asking a graduate student to enter the reactor control 

room at 11:30 p.m. on the second Tuesday of the month and asking (1) how easily is this known anomaly observed in the 

data, (2) did the ANN register the anomaly as a deviation from expected operational workplace patterns, and (3) did the 

ANN correctly classify the anomaly against pre-determined operational workplace patterns defined as profiles of increased 

insider potential. If successful, follow-on efforts could include series of more varied, less controlled experiments based on 

these same scenarios—in which a graduate student would enter the reactor control room sometime after 9 p.m. during the 

first week of the month—in order, for example, to assess ANN anomaly detection sensitivity. 

While additional studies are needed to fully understand and characterize the benefits of such an approach, the results of 

this initial study show promise for commercially available ANNs to improve ITDM from this collective-behavior-based 

approach. This data-driven approach is also beneficial in terms of leveraging data signals already collected at nuclear 

facilities to build profiles of expected operational workplace patterns. Further, introducing this new insider potential 

framework also provides an opportunity to use traditional concepts of risk management to quantitatively describe the 

susceptibility of facilities to malicious insider actions. Ultimately, this research indicates a very promising approach to 

expand and extend ITDM utilizing ANNs and data analysis techniques.  

 

5 CONCLUSIONS, INSIGHTS, & IMPLICATIONS  
The results of evaluating Phase I and Phase II data indicate that an ANN can identify and define obvious operational 

workplace patterns—based, in this case, on time-series access control data—in support of advancing ITDM. This ANN-

based approach illustrated how collections of single-access-point and time-sequenced, multiple-access-point operational 

patterns provide data-driven profiles of expected personnel behavior, thus forming a baseline from which deviations or 

anomalous behaviors can be detected. Further, applying this ANN-based approach to a representative set of insider threat 

scenarios demonstrated the efficacy of this data-driven approach across a range of increasingly complex tests. Moving to a 

data-driven framework for identifying insider threat potential would help organizations improve upon their sole reliance on 

ITM programs based on human judgment, personnel behavioral observation programs, or individual psychological 

stressors/indicators. In addition to leveraging many elements of traditional ITM programs into a more data-driven, 

quantitative approach to ITDM, ANN-based approaches also provide additional benefits. First, a more data-driven approach 

could help remove bias in observing individual psychological stressors/indicators. For example, humans are prone to 

influence from both hindsight bias (e.g., the human tendency for humans for perceive past events as being more 

predictable [30]) and the prevalence effect (e.g., the phenomenon by which humans are more likely to dismiss a target with 

low frequency rather than one with high frequency [31]). Whereas neural networks can make decisions based on data 

analytics. Second, a more data-driven approach might mitigate how personal relationships and cultural attitudes 

surrounding reporting tend to negatively impact traditional ITM programs. Historically, after-action reports from many 

insider attacks suggest that obvious signs were ignored or unreported by people close to the individual perpetrating the 

insider action [32].  Even when behavioral reporting systems were in place, obvious signs were dismissed, rationalized, or 

disregarded on the grounds of existing personal or professional relationships. By quantifying deviations from expected 

operational workplace patterns, ITDM programs can more objectively investigate such changes, understand the 

motivations behind them, and present empirical evidence to further legitimize their investigations.

While these results suggest that the ANN provides an opportunity to move to a new ITDM framework based on 

quantitatively identified deviations from operational workplace patterns, future research needs to address a number of 

limitations. These limitations tend to fall into two categories: technical limitations and human impact (policy) limitations. 

Technical limitations include the need to test additional sensing data, understand how additional data will impact ANN 

learning, and evaluate ANN performance in defining deviations. While these results also, in many cases, relied on numerical 

measures for deviations from expected operational workplace patterns, analytical complications may arise from 

incorporating new data streams.

 Follow-on research in a potential Phase III would look to incorporate ORG 2’s area radiation monitor data, which is already 

networked in the facility. Feeding those signals to the ANN should be possible with no hardware modifications. In addition, 
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